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ABSTRACT
Simple JAVA computer codes for student use solving the

homework problems in an undergraduate heat transfer text on
a PC have been developed. JAVA was selected so that the
codes could be made available in a platform-independent form
on the Internet. At this point, there are four codes for: 1)
steady, conduction in two dimensions by finite differences, 2)
unsteady conduction in two dimensions by finite differences,
3) laminar boundary layers with heat transfer  by an integral
method, and 4) turbulent boundary layers with heat transfer by
an integral method. A brief description of each code precedes
the operating instructions. Also, a default input for a typical
example and results for that case are presented.

NOTATION
cp specific heat
Cf skin friction coefficient
H ≡ δ*/θ shape factor
k thermal conductivity
Nu Nusselt number
p pressure
Pr Prandtl number
qw wall heat flux
r(x) body thickness distribution
Re Reynolds number
s(x) surface distance
St Stanton number
_____________________________________________
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T temperature
Te(x) edge temperature distribution
Tw(x) wall temperature distribution
u streamwise velocity
Ue(x) edge velocity distribution
Uinf freestream velocity
v transverse velocity
x axial and streamwise coordinate
y transverse coordinate
β≡δ*/τwdp/dx Clauser pressure gradient parameter
δ boundary layer thickness
δ* displacement thickness
θ momentum thickness
θc conduction thickness
µ                        viscosity
ν                        kinematic viscosity
ρ density
τw wall shear

INTRODUCTION
In this paper, we present simple JAVA computer codes

that are intended for student use solving the homework
problems in a standard undergraduate heat transfer text such as
Holman (1986) or White (1988) and other similar problems on
a PC or Work Station. The JAVA language (see
www.javasoft.com) was selected so that such codes could be
made conveniently available in a platform-independent form
on the Internet. These codes are not intended for use by
working professionals in the field.  The goal has been to keep
the formulation, logic and programming as simple as possible
so that the student can easily grasp the flow of the
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calculations.  Thus, primitive variables (T,u,v); (x,y,t) are
employed with no transformations.

At this point in the development, there are four separate
codes for: 1) steady, heat conduction in two dimensions by
finite differences, 2) unsteady heat conduction in two
dimensions by finite differences, 3) laminar boundary layers
with heat transfer by an integral method, and 4) turbulent
boundary layers with heat transfer by an integral method. All
the codes presume constant values of the density and
thermophysical properties, so they are limited to low-speed
cases with modest temperature differences. A brief description
of each code precedes the operating instructions. Also, a
default input for a typical example and results for that case are
presented and discussed.

These codes are meant to relieve the student of the time
consuming burden of writing, modifying and/or debugging
numerous FORTRAN or other similar codes during a heat
transfer course.  The hope is to thereby leave sufficient time
and energy for the working of actual heat transfer problems of
reasonable complexity to build understanding and intuition.
The student is not, however, relieved of the burden to think.
One should always estimate the answer the computer solution
is expected to yield. For example, one could use the exact
solution for a simpler heat conduction problem to crudely
estimate the level of the surface heat flux to be expected in a
more complicated case. The student is the analyst, not the
computer, and he or she is responsible for producing and
interpreting the correct answer.

Conduction heat transfer problems require specification
of the geometry and boundary and initial conditions.
Thermophysical property values of thermal conductivity, k,
specific heat, cp ,and density, ρ, are needed. Next, the grid
must be created.

For any boundary layer convection heat transfer
problem, one must specify the fluid through density, ρ,
conductivity, k, specific heat, cp , and viscosity, µ, or perhaps
just kinematic viscosity, ν. The next information needed
would be the freestream velocity Uinf and the inviscid edge
velocity distribution, Ue(x). Also, the wall temperature, Tw(x),
or the wall heat transfer distribution and Tinf and Te(x) are
required.

Finally, the computational region and grid must be
selected. The differential methods require the height and the
length of the computational region. The codes here are all
based on untransformed and unmapped forms of the equations
for simplicity. Thus, cartesian grids are used throughout. For
heat conduction problems, the computational region must be at
least as large as the body of interest in all dimensions. The
grid spacing dx and dy must be selected so that the geometry
and the variations in the boundary conditions can be
accurately represented. In the interests of simplicity, we have
allowed only geometries where the boundaries fall on grid
points. It is possible to adequately represent very complicated
geometries within that restriction by employing a fine grid.
For the integral methods for heat convection included here,

one need only pick the length of the flow of interest and the
streamwise grid size, dx. That grid must be fine enough to
accurately represent the variations in the boundary conditions
such  as Ue(x), Te(x)  and Tw(x).

PROGRAM STDYCOND
This program treats STeaDY CONDuction heat transfer

in two spatial directions by a numerical method. The thermal
conductivity is taken as constant. Central finite differences are
used to replace the differentials in LaPlaces Equation which
governs such problems. This results in a system of algebraic
equations, one at each interior grid point relating the
temperature at that point to that at four neighboring points.
The system is solved by the  Gauss-Seidel iteration technique.
See Holman (1986) or White (1988) for a description of the
general approach.

The user can specify either temperature or heat flux as a
boundary condition at each grid point on the boundary.

A default input set is included for the following problem.
Example Steady, 2D Heat Conduction Problem: The problem
is steady heat conduction in a 2X1 ellipse of aluminum. The
temperature on the top half of the boundary is 100C, and that
on the bottom half is 50C. What is the temperature pattern in
the interior?
Solution:

First, note that the solutions for steady heat conduction
problems with constant properties are actually independent of
the values of the thermophysical properties; LaPlaces equation
doesn’t contain any coefficients.

The 2X1 ellipse is represented in this sample input with a
relatively coarse grid to keep the file size modest. Look at Fig.
1. When you launch the Applet, the input geometry and
boundary conditions for the temperature are shown in the
window in the lower left-hand corner. The first two entries are
the grid spacings in the x and y directions. This is followed by
four columns of input with x, y  and T  for each boundary
point. The 1’s in the last column indicate that this is a
temperature boundary condition. (Use 2 for a heat flux
boundary condition.) The region and the grid are displayed
above the input panel. The solution is iterative, and the initial
guess for the temperature in the interior is given below this
window. Push the COMPUTE button at the bottom and see the
results in the simple isotherm plot in the upper right-hand
corner. The tabular output is in the window in the lower right-
hand corner. The tabular output can also be easily copied into
EXCEL for printing and plotting. Below that window, one can
see the number of iterations required to obtain a converged
solution. One can change the initial guess for the temperature
in the interior and see how that affects the iterations required.

It is very easy to change the temperatures on the
boundary and recompute the temperature distribution. To
change the grid spacing and/or the geometry, it is necessary
for the user to create an input file working offline. An EXCEL
spreadsheet is very convenient for that task. One can then “cut
and paste” the new input data into the input panel.
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PROGRAM UNSTDYCOND
Here, we solve UNSTeaDY CONDuction heat transfer

problems in two spatial directions by a numerical method. The
thermal conductivity is taken as constant. Central finite
differences are used to replace the spatial differentials in the
2D Heat Equation, which governs such problems. The time
derivative is approximated with an implicit finite difference
representation. Refer to Holman (1986) or White (1988) for
details of the general approach.

The user can specify either temperature or heat flux as a
boundary condition at each grid point on the boundary. Since
these cases are unsteady, an initial temperature distribution at
every grid point on the boundary and in the interior must be
given.

A default input set is included for the problem described
below.
Example Unsteady, 2D Heat Conduction Problem: Let us
consider an unsteady equivalent of the steady problem treated
above. The problem is now unsteady heat conduction in a 2X1
ellipse of aluminum. The temperature over the whole region is
100C at time t = 0. For t > 0, the temperature on the top half
of the boundary is held fixed at 100C, and that on the bottom
half is set to 50C. What is the temperature pattern in the
interior as a function of time? How long does it take to
approach steady state?
Solution:

In this case, the thermophysical properties are needed,
because the thermal diffusivity, k/cpρ, enters into the Heat
Equation. The values for aluminum at about 75C are shown in
the column at the lower left of Fig. 2. The geometry and
boundary conditions are given in the panel to the left in the
same format as for the steady calculation above. The region
and the grid are displayed above the input panel.

Push the RUN  button at the bottom and watch the results
develop as a function of time in the simple isotherm plot in the
upper right-hand corner. The tabular output is in the window
in the lower right-hand corner. The elapsed time is shown in
the line below the output table. The results shown in Fig. 2 are
for a time well before steady state is reached for this problem.
The FORWARD button at the bottom advances the solution
one time step at a time.

There is an analogy between iterations to find a steady
solution as in the sample problem above and time steps in an
unsteady problem approaching a steady-state solution as in
this case. If the initial “guess” used in obtaining the steady
solution is the same as the initial condition for the unsteady
problem, the correspondence is close and one could watch the
solutions develop iteration-by-iteration or time step by time
step and compare the behavior.

PROGRAM WALZHT
This program is an implementation of the Thwaites-

WALZ  and Smith-Spalding integral methods for
incompressible, laminar boundary layer flows with Heat
Transfer. Refer to Sec. 2-3-2 in Schetz (1993) and Smith and

Spalding (1958) for a description of the technique. The
method is limited to flows with constant thermophysical
properties and a constant wall temperature. It can treat cases
with sharp or blunt leading edges, planar or axisymmetric
geometries and arbitrary inviscid velocity variations.

 A default input set is included for the following flow
problem.
Example Laminar Integral Method Problem: Consider 2D
laminar flow of a fluid with a kinematic viscosity ν = 1.6x10-5

m2/s, cp = 1005 J/kg/K, ρ = 1.2 kg/m3 and Prandtl number Pr =
0.72 at Uinf = 2.0 m/s over a surface that is a flat plate from the
leading edge to x = 1.0 m. At that station, a ramp begins that
produces an inviscid velocity distribution Ue(x) = 2.1 - x/10, m/s.
This is an adverse pressure gradient, since Ue is decreasing so
that p increases. Choose the wall to freestream temperature
difference, Tw - Te = 20C. Calculate the boundary layer
development over this surface up to x = 2.0 m. Does the flow
separate? Note how the dimensionless wall shear, Cf, and
dimensionless heat transfer, Nu, vary in the constant pressure and
varying pressure regions along the surface.
Solution:

We must provide input data for the kinematic viscosity as ν
= 1.6e-5, Prandtl number Pr = 0.72, cp = 1005, ρ = 1.2 and the
freestream velocity as Uinf = 2.0. Select NMAX = 41 to give dx =
0.05.

The body thickness distribution, r(x), can be specified. The
code will then calculate the surface distance along the body. The
default is r(x) = 0.0. Also, one must choose either a planar or
axisymmetric geometry.

Finally, the inviscid velocity distribution is required. Since
this case has a bi-linear edge velocity variation, velocities at only
a few points including xinit and xfin need to be specified to define
the distribution. The wall to edge temperature distribution Tw – Te

is specified in the same way.
The window in Fig. 3 shows the input information for the

default case. On the left are two panels containing the input data
for this case. The input data in the far left panel can be changed
by selecting the item to be changed with the menu button,
entering the new value in the slot below and pushing SET. The
input data in the next panel to the right can be changed in a
similar manner. One might wish to change the dimensionless
edge velocity distribution, Ue/Uinf , the body shape and/or the
temperature difference. All that is required is to enter or modify
sets of values for x, r, Ue/Uinf and Tw-Te in the panel below and
push SET. The code will fit a spline through the points used as
input.

Then, press the START button and watch the integral
quantities and the skin friction and heat transfer results develop
in the graphs on the right. Use the panel in the upper right hand
corner to select which sets of results are displayed. The window
given in Fig. 3 shows the results at the end of the calculation.
Tabular values of the output can be accessed in the panel
indicated. One can scroll up and down in the table with the slider
bar and left and right with the cursor. Some browsers display the
table starting at the bottom, so it may be necessary to scroll up to
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see the column headers. The tabular output can also be easily
copied into EXCEL for printing and plotting.

PROGRAM MOSESHT
Here, we present a code for the MOSES integral method for 2D,
incompressible, turbulent boundary layers extended to include
Heat Transfer with the approximate integral energy equation
method of Ambrok as described in Kays and Crawford (1980).
Refer to Sec. 7-7 in Schetz (1993) for the theory behind the
original Moses method.

The method is limited to flows with constant
thermophysical properties. It can treat cases with arbitrary
inviscid velocity and wall temperature variations.
Example Turbulent Integral Method Problem: Consider 2D
turbulent flow of a fluid with a kinematic viscosity ν = 1.0x10-5

m2/s, Prandtl number Pr = 5, cp = 4187, ρ = 1.2 at Uinf = 10.0 m/s
over a surface that is a flat plate from  x = 0.0 to 5.0 m. Calculate
the boundary layer  to x = 7.0 m assuming a simple inviscid
velocity distribution Ue(x) = 10 m/s = constant. The temperature
difference is 10K; what is the heat transfer?
Solution:

We must input ν = 1e-5, Pr = 5, cp = 4187, and ρ = 1.2.
Since the first part of the flow is over a flat plate, the simple
integral solution (see Sec. 7-7 in Schetz, 1993) can be used
giving δ = 0.0857 m. Take St = 6.89e-4 at the initial station.
Also, at the initial station the pressure gradient parameter β = 0.

Pick NMAX = 21 corresponding to dx =  0.10 m, which is
about the size of the initial boundary layer thickness.

This case has a simple edge velocity variation, so velocities
and temperature differences can be specified at only two points,
at xinit and xfin.

The two panels on the left in Fig. 4 contain the input data
for this case. The input data in the far left panel can be changed
by selecting the item with the menu button, entering the new
value in the slot below and pushing SET. The input data in the
next panel to the right can be changed in a similar manner. The
user can modify the dimensionless edge velocity distribution,
Ue/Uinf and/or the temperature difference, Tw-Te. All that is
necessary is to enter or modify sets of values for x and Ue/Uinf

and Tw-Te in the panel below and push SET.
Now, press the START button and watch the integral

quantities and the skin friction, heat transfer develop in the
graphs on the right. Use the panel in the upper right hand corner
to select which sets of results are displayed.  The window in Fig.
4 shows the results at the end of the sample calculation. Again,
tabular values of the output can be accessed in the panel
indicated, and one can scroll up and down in the table with the
slider bar and left and right with the cursor.

DISCUSSION
All of these programs make use of tabular input (of edge

velocity and coordinates) and tabular output (of boundary
layer parameters and profiles). Data may be copied into or out
of these tables using standard cut/paste/copy operations. For
example, results may be pasted into EXCEL or a similar

program so that the student can plot them in a presentable
form.

This compatibility with the 'clipboard' and other native
applications is a very important element of the programs, since
it largely overcomes the limitation of JAVA programs not
being able to read or write files on the hard disk. It also opens
up the possibility of developing a suite of applets that the
student can use in combination to investigate the solution to
more general problems. For example, we are in the process of
developing a panel code applet and an applet to determine
transition location given laminar boundary layer parameters as
a function of streamwise distance. Given a geometry in the
form of a paneling scheme, the panel code will provide edge
velocity and coordinates as table output, and these may then
be pasted into the WALZHT program and a laminar boundary
layer computed. Results from WALZHT may then be pasted
into the transition calculator whose output is used to initialize
one of the turbulent boundary layer applets.

The current suite of codes can be found under Heat
Transfer Applets at: http://www.engapplets.vt.edu. Primary
candidates for upgrades and further codes in the near future are
the addition of heat generation to the conduction codes new
codes for numerical solution of compressible, laminar and
turbulent boundary layers and one for radiation heat transfer.
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Figure 1. Sample input and output for the default case from the STDYCOND code.

Figure 2. Sample input and output for the default case from the UNSTDYCOND code.
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Figure 3. Sample input and output for the default case from the WALZHT code.

Figure 4. Sample input and output for the default case from the MOSESHT code.


